Extensions 1→N→G→Q→1 with N=C22 and Q=C3xQ16

Direct product G=NxQ with N=C22 and Q=C3xQ16
dρLabelID
C2xC6xQ16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C22 and Q=C3xQ16
extensionφ:Q→Aut NdρLabelID
C22:(C3xQ16) = A4xQ16φ: C3xQ16/Q16C3 ⊆ Aut C22486-C2^2:(C3xQ16)192,1016
C22:2(C3xQ16) = C3xC8.18D4φ: C3xQ16/C24C2 ⊆ Aut C2296C2^2:2(C3xQ16)192,900
C22:3(C3xQ16) = C3xC22:Q16φ: C3xQ16/C3xQ8C2 ⊆ Aut C2296C2^2:3(C3xQ16)192,884

Non-split extensions G=N.Q with N=C22 and Q=C3xQ16
extensionφ:Q→Aut NdρLabelID
C22.1(C3xQ16) = C3xC8.4Q8φ: C3xQ16/C24C2 ⊆ Aut C22962C2^2.1(C3xQ16)192,174
C22.2(C3xQ16) = C3xC23.31D4φ: C3xQ16/C3xQ8C2 ⊆ Aut C2248C2^2.2(C3xQ16)192,134
C22.3(C3xQ16) = C3xC23.48D4φ: C3xQ16/C3xQ8C2 ⊆ Aut C2296C2^2.3(C3xQ16)192,917
C22.4(C3xQ16) = C3xC22.4Q16central extension (φ=1)192C2^2.4(C3xQ16)192,146
C22.5(C3xQ16) = C6xQ8:C4central extension (φ=1)192C2^2.5(C3xQ16)192,848
C22.6(C3xQ16) = C6xC2.D8central extension (φ=1)192C2^2.6(C3xQ16)192,859

׿
x
:
Z
F
o
wr
Q
<